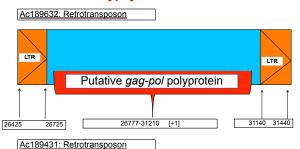
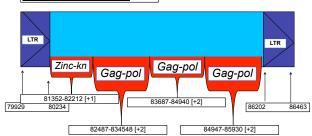

Brassica: An Undiscovered World of Transposable Elements

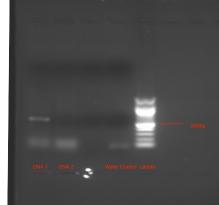
Copia Annotations


Justin Brown and Krelin Naidu University of Georgia, BIOL 3240L, Athens, Georgia

Gypsy Annotations

Abstract

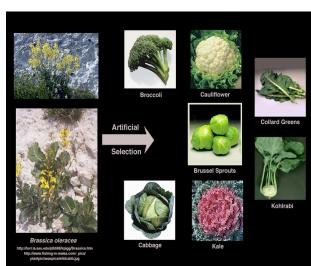

Brassica Oleracea, a significant species of the mustards family, has proven to have several high nutritional and anti-cancerous properties. With its transgenic varieties, this cool weather crop has a genome of 600Mb. Much research indicates that both Class 1 retrotransposons and Class 2 DNA transposons have contributed to the expansion and change of the Brassica genome. While experimenting, specialized Actin primers were required in order to produce a successful band in the agarose gel. Copia and Gypsy superfamilies were used to determine transposable elements that appear to originate from a single ancestor long ago. Brassica has many cousins in the vegetable world including Brassica rapa, Brassica napus, Brassica juncea, Brassica nigra, and Brassica carinata; however, these forms of Brassica are more commonly known as cabbage, cauliflower, and Brussels sprouts.

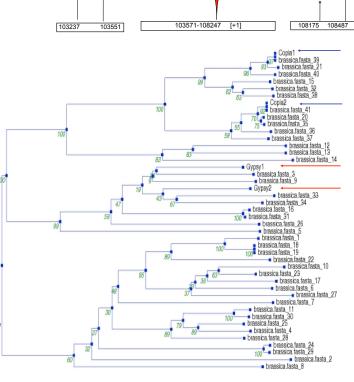


Putative gag-pol polyprotein

LTR

Ac183494: Retrotransposon




This PCR reaction demonstrates the use of specialized Actin primers. On the left, a band can be seen of the expected size. These results prove that the DNA was adequately extracted and prepared for gel electrophoresis.

Phylogenetic Tree

The following Tree indicates that Gypys and Copias come from two different superfamilies. Unlike the Gypsys with a very similar lineage, the Copias can be tracked to come from a common ancestor much further down the evolutionary line.

LTR